

### SAMPLE PREPARATION PROCEDURE

The sample was characterized utilizing sterile Saline as the electrolyte with triple filtered Isoton as the system fluid. After thawing the samples, an aliquot of neat sample was added to 100 mL of Sterile Saline and analyzed in Volumetric Control Mode of 2000  $\mu$ L with the blank subtracted to remove counts from the electrolyte. The samples were reanalyzed using the same methodology 4 hours minutes after the initial analysis.

# SUMMARY OF PARTICLE ANALYSIS STATISTICAL DATA

| ltom | VA Samala ID | Averaged Number Statistics  |                               |       |       |       |       |
|------|--------------|-----------------------------|-------------------------------|-------|-------|-------|-------|
| No.  | (S-VAXXXX)   | UNIQUE ID<br>(i.e. lot no.) | Concentration<br>[counts /mL] | Mean  | D10   | d50   | d90   |
| 1    | VAxxxxxx-1   | Sample 1 - 030121           | 11.00e6                       | 2.354 | 2.037 | 2.229 | 2.759 |
| 2    | VAxxxxx -2   | Sample 2 - 030121           | 13.62e6                       | 2.363 | 2.039 | 2.243 | 2.774 |
|      |              |                             |                               |       |       |       |       |
| 3    | VAxxxxx -3   | Sample 3 - 030121           | 5.824e6                       | 2.369 | 2.037 | 2.232 | 2.801 |
| 4    | VAxxxxx -4   | Sample 4 - 030121           | 7.113e6                       | 2.382 | 2.039 | 2.244 | 2.817 |
|      |              |                             |                               |       |       |       |       |
| 5    | VAxxxxx -5   | Sample 5 - 030121           | 5.411e6                       | 2.369 | 2.034 | 2.218 | 2.800 |
| 6    | VAxxxxx -6   | Sample 6 - 030121           | 6.261e6                       | 2.376 | 2.035 | 2.222 | 2.811 |
|      |              |                             |                               |       |       |       |       |
| 7    | VAxxxxxx -7  | Sample 7 - 030121           | 60.47e6                       | 2.902 | 2.132 | 2.726 | 3.906 |
| 8    | VAxxxxx -8   | Sample 8 - 030121           | 53.53e6                       | 2.999 | 2.148 | 2.816 | 4.099 |

## BACKGROUND ON MULTISIZER™4 COULTER COUNTER TECHNOLOGY



Using the Coulter Principle, also known as Electrical Sensing Zone (EZS) the Multisizer<sup>TM</sup> Coulter Counter provides size distribution in number, volume, and surface area in one measurement, with an overall sizing range of 0.4  $\mu$ m to 1600  $\mu$ m. Its response is unaffected by particle color, shape, composition, or refractive index. The Coulter Principle is the leading technology in high resolution and accuracy, and it is enhanced even further in the Multisizer<sup>TM</sup> 4 by using Digital Pulse processor (DPP). DPP provides ultra-high resolution, multiple channel analysis, and accuracy that is unattainable by other technologies.











Calculations from 2 µm to 60 µm

|           |             | Amount  | Mean  | Median | d10   | d50   | d90   |
|-----------|-------------|---------|-------|--------|-------|-------|-------|
|           |             | per mL  | μm    | μm     | μm    | μm    | µm    |
|           | 121_01.#m4  | 5.825e6 | 2.373 | 2.233  | 2.037 | 2.233 | 2.808 |
|           | \$21 02.#m4 | 5.833e6 | 2.368 | 2.232  | 2.037 | 2.232 | 2.800 |
|           | 421 03.#m4  | 5.772e6 | 2.371 | 2.232  | 2.037 | 2.232 | 2.801 |
|           | 421 04.#m4  | 5.828e6 | 2.369 | 2.235  | 2.038 | 2.235 | 2.806 |
|           | \$21_05.#m4 | 5.863e6 | 2.367 | 2.227  | 2.037 | 2.227 | 2.791 |
| (Average) |             | 5.824e6 | 2.369 | 2.232  | 2.037 | 2.232 | 2.801 |
| (C.V.)    |             | 0.6%    | 0.1%  | 0.1%   | 0.0%  | 0.1%  | 0.2%  |



Number Statistics (Arithmetic) Calculations from 2 µm to 60 µm

|           |           | Amount<br>per mL | Mean<br>µm | Median<br>µm | d10<br>µm | d50<br>μm | d90<br>μm |
|-----------|-----------|------------------|------------|--------------|-----------|-----------|-----------|
|           | 21 01.#m4 | 7.039e6          | 2.390      | 2,250        | 2.039     | 2.250     | 2.842     |
|           | 21 02.#m4 | 7.115e6          | 2.383      | 2.249        | 2.040     | 2.249     | 2.812     |
|           | 21 03.#m4 | 7.141e6          | 2.380      | 2.240        | 2.039     | 2.240     | 2.813     |
|           | 21 04.#m4 | 7.214e6          | 2.378      | 2.242        | 2.039     | 2.242     | 2.812     |
|           | 21_05.#m4 | 7.055e6          | 2.377      | 2.241        | 2.038     | 2.241     | 2.807     |
| (Average) |           | 7.113e6          | 2.382      | 2.244        | 2.039     | 2.244     | 2.817     |
| (C.V.)    |           | 1.0%             | 0.2%       | 0.2%         | 0.1%      | 0.2%      | 0.5%      |





Number Statistics (Arithmetic) Calculations from 2 µm to 60 µm

|           |           |         |       | T-TA CALIFICA | 64 A V | 0.0   | 0.00  |  |
|-----------|-----------|---------|-------|---------------|--------|-------|-------|--|
|           |           | per mL  | μm    | um            | μm     | µm    | um    |  |
|           | 21 01.#m4 | 5.417e6 | 2.372 | 2.220         | 2.036  | 2.220 | 2.800 |  |
|           | 21 02.#m4 | 5.430e6 | 2.372 | 2.216         | 2.033  | 2.216 | 2.798 |  |
|           | 21 03.#m4 | 5.435e6 | 2.372 | 2.223         | 2.034  | 2.223 | 2.815 |  |
|           | 21 04.#m4 | 5.419e6 | 2.363 | 2.215         | 2.034  | 2.215 | 2.795 |  |
|           | 21_05.#m4 | 5.357e6 | 2.368 | 2.217         | 2.035  | 2.217 | 2.793 |  |
| (Average) |           | 5.411e6 | 2.369 | 2.218         | 2.034  | 2.218 | 2.800 |  |
| (C.V.)    |           | 0.6%    | 0.2%  | 0.2%          | 0.1%   | 0.2%  | 0.3%  |  |





